

USE OF STATE ESTIMATION TO CALCULATE ANGLE-OF-ATTACK POSITION ERROR FROM FLIGHT TEST DATA

THESIS
Thomas H. Thacker
Captain, USAF
AFIT/GAE/AA/85J-3

DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

USE OF STATE ESTIMATION TO CALCULATE ANGLE-OF-ATTACK POSITION ERROR FROM FLIGHT TEST DATA

THESIS
Thomas H. Thacker Captain, USAF

AFIT/GAE/AA/85J-3

USE OF STATE ESTIMATION TO CALCULATE

 ANGLE-OF-ATTACK POSITION ERRORFROM FLIGHT TEST DATA

THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology

Air University
In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautical Engineering

Approved for public release; distribution unlimited.

Preface

The purpose of this project was to determine the position errors of the angle-of-attack (AOA) sensors on aircraft using state estimation with flight test data. Aircraft from the USAF Test Pilot School (TPS) were used to obtain flight test data, and Kalman filtering was used to process the data. The results of this project are significant to future flight test projects where an accurate AOA measurement is required.

Aircraft AOA position errors are caused by aerodynamic factors such as local flow and upwash. The first step in finding those errors was to determine the equations for calculating the true $A O A$ from other available flight test parameters. Since the inputs to those equations were from instrumentation on flight test aircraft, they were noise corrupted and had to be filtered. I used state estimation in a Kalman filter program to calculate an "optimal" true AOA. The data were obtained from flights in a T-38A Talon, a two-seat supersonic trainer modified with an instrumented Vought yaw and pitch system noseboom. The position errors calculated in this report are only good for that aircraft and nose boom configuration. However, the methods used are applicable to all properly instrumented aircraft.

I would like to thank my thesis advisors, Major (Dr.) James T. Silverthorn of the USAF TPS and Dr. Robert A. Calico of AFIT, for their help in this project. I would also like to
thank the test pilots I flew with on the data flights, Major Philip B. Arnold and Captain David J. Eichhorn of the USAF TPS. But most of all I would like to thank my wife, Diana, for her help and understanding over the last two years of AFIT and TPS.

Table of Contents

Page
Preface ii
List of Figures vi
List of Tables viii
List of Symbols and Abbreviations ix
Abstract xii
I. Introduction 1
Problem 1
Background 1
Scope 4
Objectives 5
II. Angle-of-Attack Equations 6
AOA Correction Factor 6
Equations of Motion 7
Computer Program AOAOPT 11
Results 11
III. State Estimation 15
State Equations 15
Kalman Filtering 16
Filter Tuning 19
Computer Program KALOPT 21
Results 23
IV. Flight Test 26
Test Item Description 26
Instrumentation 29
Flight Test Method 32
Results 33
V. Conclusions and Recommendations 39
Appendix A: Flight Test Results 41
Appendix B: Computer Program AOAOPT 60
Appendix C: Computer Program KALOPT 67
Appendix D: Flight Test Summary 76
Appendix E: T-38A YAPS Noseboom Diagram 79
Bibliography 82
Vita 83

List of Figures

Figure Page

1. USAF/CAL NT-33 Angle-of-Attack and Sideslip Position Error Correction Factors 2
2. Relationship of Fixed Earth Axis (XYZ) to Vehicle Body Axis (xyz) 8
3. True AOA Calculated Using the Angle Method With Unfiltered Data Compared to Measured AOA From the Aircraft AOA Sensor 12
4. True AOA Calculated Using the Iterative Method With Unfiltered Data Compared to Measured AOA From the Aircraft AOA Sensor 14
5. An Example of Kalman Filter Tuning Through Covariance Analysis 20
6. Optimal True AOA Calculated by the Kalman Filter Compared to Measured AOA and Unfiltered True AOA. 24
7. Optimal Pitch Angle Calculated by the Kalman Filter Compared to Measured Pitch Angle 25
8. USAF T-38A Talon 26
9. T-38A Yaw and Pitch System Noseboom 28
10. Hysteresis Error in T-38A Angle-of-Attack Transducer 31
11. T-38A Angle-of-Attack Position Error Correction Factor for Vought YAPS Noseboom 36
12. T-38A Angle-of-Attack Position Error for a Vought YAPS Noseboom at 25,000 feet H_{c}, Mach 0.84 42
13. $T-38 A$ Angle-of-Attack Position Error for a Vought YAPS Noseboom at. 25,000 feet H_{c}, Mach 0.94 43
14. T-38A Angle-of-Attack Position Error for a Vought YAPS Noseboom at 25,000 feet H_{c}, Mach 0.98 44
15. T-38A Angle-of-Attack Position Error for a Vought YAPS Noseboom at 25,000 feet H_{c}, Mach 1.07 45
16. T-38A Angle-of-Attack Position Error for a Vought YAPS Noseboom at 25,000 feet H_{c}. Mach 0.62 46
Figure Page
17. T-38A Angle-of-Attack Position Error for a Vought YAPS Noseboom AT 25,000 feet H_{c}, Mach 0.44 47
18. T-38A Angle-of-Attack Position Error for a Vought. YAPS Noseboom at 15,000 feet H_{c}, Mach 0.83 48
19. T-38A Angle-of-Attack Position Error for a Vought. YAPS Noseboom at 15,000 feet H_{c}. Mach 0.94 49
20. T-38A Angle-of-Attack Position Error for a Vought. YAPS Noseboom at 15,000 feet H_{c}, Mach 0.96 50
21. T-38A Angle-of-Attack Position Error for a Vought YAPS Noseboom at 15,000 feet H_{c}, Mach 1.07 • 51
22. T-38A Angle-of-Attack Position Error for a Vought YAPS Noseboom at 15,000 feet H_{c}, Mach 0.64 52
23. T-38A Angle-of-Attack Position Error for a Vought YAPS Noseboom at 15,000 feet H_{c}, Mach 0.42 53
24. T-38A Angle-of-Attack Position Error for a Vought YAPS Noseboom at 25,000 feet H_{c}, Mach 0.81 54
25. T-38A Angle-of-Attack Position Error for a Vought YAPS Noseboom at 25,000 feet H_{c}, Mach 0.92 55
26. T-38A Angle-of-Attack Position Error for a Vought YAPS Noseboom at 25,000 feet H_{c} Mach 0.96 56
27. T-38A Angle-of-Attack Position Error for a Vought. YAPS Noseboom at 25,000 feet H_{c}, Mach 1.06 57
28. T-38A Angle-of-Attack Position Error for a Vought YAPS Noseboom at 25,000 feet H_{c}, Mach 0.65 58
29. T-38A Angle-of-Attack Position Error for a Vought YAPS Noseboom at 25,000 feet H_{c}. Mach 0.44 59
30. Vought Yaw and Pitch System Noseboom Diagram (Side View) 80
31. Vought Yaw and Pitch System Noseboom Diagram (Top View) 81

List of Tables

Table Page
I. USAF T-38A Talon Statistics 27
II. Summary of Flight Test Parameters 30
III. Summary of Flight Test Results 35
IV. T-38A Flight Test Points 77
V. Summary of T-38A Test Flights 78

List of Symbols and Abbreviations

Symbol	Title	Units
AOA	angle-of-attack	degrees
a_{z}	normal acceleration	feet/sec ${ }^{2}$
cg	center of gravily	---
DAS	data acquisition system	---
deg	degrees	degrees
$\overline{\mathrm{F}}$	applied force	pounds
F_{z}	component of force in z direction	pounds
g	acceleration due to gravjty	feet/sec ${ }^{2}$
h	vertical velocjty	feet/sec
H_{C}	pressure altitude	feet
hz	hertz	cycles/sec
K_{α}	$A O A$ position error correction factor	---
1 bs	pounds	pounds
M	Mach number	---
m	mass	slugs
MAC	mean aerodynamic chord	feet
NF...U	noseboom instrumentation unit.	---
n_{z}	normal load factor	9
P, Po, p	roll rate	radians/sec
Q, Q_{0}, q	pitch rate	radians/sec
R	yaw rate	radians/sec
rms	root mean squared	---
sec	seconds	seconds
S/N	serial number	---

Symbol	Title	Units
$\mathrm{U}, \mathrm{U}_{0}$	true airspeed	feet/sec
U, U o^{\prime} u	component of vehicle velocity along x-axis	feet/sec
$\underline{u}(t), \underline{u}\left(t_{j}\right)$	control input vector	---
$\mathrm{V}, \mathrm{V}_{0}, \mathrm{v}$	component of vehicle velocity along y-axis	feet/sec
$\overline{\mathrm{V}}_{\mathrm{T}}$	vehicle velocity vector	feet/sec
$\underline{v}(t)$	measurement noise vector	---
$W, W_{C},{ }^{W}$	component of vehicle velocity along z-axjs	feet/sec
$\underline{w}(t)$	input noise vector	---
x	lonojtudinal distance from fixed	
	point to AOA sensor	feet
$\underline{x}(t)$	state vector	
$\hat{x}(t), \hat{x}\left(t_{j}\right)$	estimated state vector	---
$\underline{x}\left(t_{0}\right)$	injtial condition of state vector	---
XYZ	fjxed earth axis	---
$x y z$	vehicle body axis	---
Y_{α}	lateral distance from centerline to	
	AOA sensor	feet
YAPS	yaw and pjtch system	---
$\underline{z}(t), \underline{z}(t)$	measurement history vector	---
α	angle-of-attack	degrees
${ }_{\text {c }}$	true AOA	degrees
${ }^{\alpha}{ }_{m}$	measured AOA at ajrcraft sensor	degrees
${ }_{0}$	injtial value of AOA	degrees
${ }^{\alpha}{ }_{0}{ }_{T}$	bjas between true and measured AOA	degrees
$\Delta \alpha$	rate of change of $A O A$	deg/sec

Symbol	Title	Units
$\Delta \mathrm{cg}$	longitudinal distance from cg to	
	fixed point	feet
Δt	time interval	seconds
γ	flight path angle	degrees
$\bar{\omega}$	vehjcle rotation vector	radians/sec
σ^{2}	variance of normal acceleration	feet $^{2} / \sec ^{4}$
${ }_{\sigma}{ }^{a^{a}}{ }_{q}$	variance of pitch rate	$\mathrm{deg}^{2} / \mathrm{sec}^{2}$
σ_{θ}^{2}	variance of pitch angle	degrees ${ }^{2}$
θ	pitch angle	degrees
${ }^{\theta} \mathrm{m}$	measured pitch angle	degrees
()	time rate of change	---
\tilde{q}	strength of system noise	---
\tilde{r}	strength of measurement noise	--

Abstract

This project determined the position errors of an aircraft's angle-of-attack (AOA) sensor using state estimation with flight test data. The position errors were caused by local flow and upwash and were found to be a function of $A O A$ and Mach number. The test aircraft used in this project was a $T-38 A$ Talon supersonic trainer from the USAF Test Pilot School configured with a Vought yaw and pitch system noseboom and an internal Aydin-Vector data acquisition system (DAS).

The position errors were found by calculating the true AOA using equations of motion and DAS parameters. The data from the DAS were noise corrupted and had to be filtered. This was accomplished using state estimation in a Kalman filter. The estimated AOA was compared to the measured AOA from the noseboom sensor to obtain the position error. Accurate position errors were obtained, even in dynamic maneuvers. The method was accurate enough to identify a hysteresis error in the $T-38 A^{\prime} s$ AOA sensor of $+/-0.5$ degrees, which was confirmed by ground calibration. This method should be considered in future $A O A$ error testing.

USE OF STATE ESTIMATION TO CALCULATE

ANGLE-OF-ATTACK POSITION ERROR

FROM FLIGHT TEST DATA

I. Introduction

Problem

Angle-of-attack (AOA) is a primary parameter of performance and stability-and-control in flight test. Unfortunately, the AOA measured by the aircraft sensors has a position error caused by the aerodynamic influence of the aircraft body. The first source of this position error is local flow about the AOA sensor caused by aerodynamic interference, boundary layer effects, and shock interaction. The second source of the position error is upwash from aircraft components such as the fuselage and wing. The accurate determination of $A O A$ position error is a significant problem in flight test (1:7).

Background

The magnitude of the $A O A$ position error is evident with the USAF/CAL variable stability NT-33 airplane, a jet trainer used in the USAF Test Pilot School (TPS) curriculum. The NT-33 has a fuselage-mounted AOA vane which is subject to large flow and upwash effects. Figure 1 shows the NT-33 AOA (and sideslip, which has similar errors) position error
correction factors (2:163). At Mach 0.6, the NT-33 has an AOA position error correction factor of 1.75 , which means the measured $A O A$ is 1.75 times the true $A O A$. The AOA position errors were determined by combining wind tunnel and flight test data. One data point was determined, and a line was extrapolated over a range of Mach numbers. AOA position error was assumed to be a function of Mach number alone (2:162-163).

ESTIMATED MACH NUMBER VARIATION CORRESPONDS TO FLOW AROUND AN ELLIPSOID OF REYOLUTION REF: SHAPIRO, COMPRESSIBLE FLOW, VOL I. PG 399

Figure 1. USAF/CAL NT-33 Angle-of-Attack and Sideslip Position Error Correction Factors (2:163)

Wind tunnel calibration is a commonly used method of determining AOA position error at the Air Force flight Test Center (AFFTC). An entire noseboom instrumentation unjt (NBIU) can be installed in a wind tunnel and tested over a range of conditions. One of the AFFTC standard NBIUs, a Conrac adapter with a Rosemount Model 852 G pitot-static probe, was tested in the NASA/Ames Research Center wind tunnels in 1973 (3). The AOA position error was found to be small, less than $7.5 \%(3: 38)$. The wind tunnel test showed AOA position error to be a function of Mach number and sideslip angle. Reynold's number effects were not discovered.

Very little flight test.ing has been accomplished to determine $A O A$ position error. One technique that has been used is to mount flight path accelerometers on the test aircraft and fly 1 g , wings level stable points over a range of Mach numbers, sideslips, and aircraft wejghts. True AOA (a) is determined from the equation:

$$
\begin{equation*}
\alpha=\theta-\gamma \tag{1}
\end{equation*}
$$

where θ is pitch angle in wings level flight and γ is the flight path angle. The T-46 jet trainer Combined Test Force is planning to use this technique to calibrate their AOA sensors when flight testing begins in October 1985. They plan to eliminate noise in the data by using a 2 hz low bypass Butterworth filter. Unfortunately, not all aircraft can be
equipped with flight path accelerometers due to the size and required cost. Furthermore, the range of AOA that is attainable at a particular Mach number is very limited for straight and level flight, since altitude is the only variable that can be adjusted. As an example, the T-38A, at Mach 0.83, flies at +2.5 degrees AOA at 25,000 feet and at +1 degrees AOA at 15,000 feet. A technique to obtain AOA position error during dynamic maneuvers is required.

A new flight test method of determining AOA position error is through the use of MMLE3, a modified maximum likelihood estimation program (4) MMLE3 uses the aircraft mathematical model with estimated stability and control (S\&C) derivatives. Flight test maneuvers such as elevator doublets are flown, and MMLE3 tries to match the time history of the maneuver with the time history of the math model by changing the estimated S\&C derivatives. MMLE3 also calculates an AOA position error factor for the maneuver (4:3). MMLE3 is not extremely accurate and requires numerous flight test maneuvers to increase its accuracy. An easier and more accurate technique is needed to calibrate AOA sensors.

Scope

The purpose of this project was to determine the position errors on the $A O A$ sensors of aircraft using flight test data available from standard data acquisition systems (DAS). Initially, AOA position error was determined using deterministic equations from straight and level flight.

Problems with this technique suggested a more general approach. State estimation in the form of Kalman filtering was used to filter out noise on the flight test data and calculate an "optimal" true $A O A$ during dynamic maneuvers. This true AOA was compared to the measured AOA to determine the position errors. USAF TPS T-38A aircraft were used to collect data and the AOA position errors are valid for those aircraft. However, the technique will work for any properly instrumented aircraft.

Objectives
The objectives of this project were to:
(1) Determine the equations necessary to calculate the true AOA from flight test data.
(2) Use state estimation (Kalman filtering) to filter noise from the flight test data and calculate an "optimal" true AOA.
(3) Collect the flight test data needed to compute the "optimal" true AOA.
(4) Calculate the $A O A$ position error correction factors for the test aircraft.

II. Angle-of-Attack Equations

AOA Correction Factor

The AOA position error correction factor, K_{α}, is
calculated from the equation (4:3):
Pitch rate Roll Rate
$\alpha_{c}=\frac{\alpha_{m}}{K_{\alpha}}+\frac{q\left(x_{\alpha}+\Delta r g^{\Delta r}\right.}{U}-\frac{p\left(Y_{\alpha}\right)}{U}$
where α_{c} is the true $A O A$ of the aircraft and α_{m} is the $A O A$ measured by the ajrcraft's sensor.

The term:

$$
\begin{equation*}
\frac{q\left(x_{\alpha}+\Delta c g\right)}{U} \tag{3}
\end{equation*}
$$

corrects the measured $A O A$ for pitch rate (q) effects. The terms x_{α} and $\Delta c g$ account for the longitudinal distance from the $c g$ to the $A O A$ sensor. U is aircraft true airspeed.

The term:

$$
\begin{equation*}
\frac{p\left(y_{\alpha}\right)}{U} \tag{4}
\end{equation*}
$$

corrects the $A O A$ for roll rate (p) effects. The term y_{a} is the lateral distance from the aircraft centerline to the $A O A$ sensor.

All flight testing for this project was accomplished wings level. Since there was no roll rate, equation (4) drops out of equation (2). Pitch rate, true airspeed, and measured AOA are parameters measured by the aircraft DAS. Longitudinal
distance from the cg to the AOA sensor is a function of aircraft fuel weight and is easily calculated. The only remaining unknown is true AOA.

Equations of Motion
In order to calculate the true $A O A$, an equation was needed that used parameters available from the aircraft DAS. Equation (1) showed the angular relationship between $A O A$, pitch angle, and flight path angle in wings level flight. Since many test ajrcraft, including the TPS aircraft used in this project, do not have flight path accelerometers, flight path angle (γ) must be calculated by:

$$
\sin r=\frac{\dot{h}}{U} \quad \begin{align*}
& \mathrm{h}=\mathrm{VV} \tag{5}\\
& \mathrm{U}=\mathrm{TAS}
\end{align*}
$$

where h is the vertical velocity of the aircraft. Vertical velocity can be calculated as the time rate of change of the altitude from the DAS.

Another equation to calculate true AOA comes from the aircraft's equations of motion (5:3.21-3.51). The vector equation for applied force (F) is:

$$
\begin{equation*}
\overline{\mathrm{F}}=\left.\mathrm{m} \frac{\mathrm{~d} \overline{\mathrm{~V}}}{\mathrm{dt}}\right|_{X Y Z} \tag{6}
\end{equation*}
$$

which applies to inertial space. Assuming the forces resulting from the earth's rotation and coriolis effects to be negligible, a fixed earth axis system can be used instead of
inertial space. The movement of a vehicle with respect to a fixed earth axis is shown in Figure 2.

Figure 2. Relationship of Fixed Earth Axis (XYZ) to Vehicle Body Axis (xyz) (5:3.22)

The vector equation for the time rate of change of velocity from one axis system to another is:

$$
\begin{equation*}
\left.\frac{d \bar{V}_{T}}{d t}\right|_{X Y Z,}=\left.\frac{d \bar{V}_{T}}{d t}\right|_{x y z}+\bar{\omega} X \bar{V}_{T} \tag{7}
\end{equation*}
$$

where $X Y Z$ is the fixed earth axis and $x y z$ is the aircraft body axis.

Equation (6) now becomes:

$$
\begin{equation*}
\bar{F}=m\left[\left.\frac{d \bar{V}_{T}}{d t}\right|_{x y z}+\bar{\omega} \times \bar{V}_{T}\right] \tag{8}
\end{equation*}
$$

where aircraft velocity $\left(\bar{V}_{T}\right)$ can be written as:

$$
\overline{\mathrm{V}}_{\mathrm{T}}=\mathrm{U} \overline{\mathrm{i}}+\mathrm{V} \overline{\mathrm{j}}+\mathrm{w} \overline{\mathrm{k}}
$$

and aircraft rotation $(\bar{\omega})$ can be written:

$$
\bar{\omega}=P \bar{i}+Q \bar{j}+R \bar{k}
$$

Equation (8) now becomes:

$$
\bar{F}=m\left[\dot{U}_{\bar{i}}^{\bar{F}}+\dot{V_{j}}+\dot{W_{k}}+\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \tag{9}\\
P & Q & R \\
U & V & W
\end{array}\right|\right]
$$

Taking the cross product of the inner term and expanding:

$$
\begin{equation*}
\bar{F}=m[\dot{U} \bar{i}+\dot{V} \bar{j}+\dot{i} \bar{k}+(Q W-R V) \bar{i}-(P W-R U) \bar{j}+(P V-Q U) \bar{k}] \tag{10}
\end{equation*}
$$

Looking at only the z component of force gives:

$$
\begin{equation*}
F_{z}=m(\dot{W}+P V-Q U)=m\left(a_{z}\right) \tag{11}
\end{equation*}
$$

where $(\dot{W}+P V-Q U)$ equals the normal acceleration, a_{z}. Assuming that the aircraft motion consists of small deviations from an initial reference condition, the above values can be written as:

$$
\begin{aligned}
\dot{W} & =\dot{w}_{0}+\dot{w} \\
P & =P_{0}+p \\
V & =V_{0}+v \\
Q & =Q_{0}+q \\
U & =U_{0}+u
\end{aligned}
$$

where the small case values are the small perturbations from the initial values. Assuming the aircraft starts from wings level, steady straight symmetrical flight:

$$
\dot{W}_{\mathrm{O}}=P_{0}=V_{0}=Q_{0}=0
$$

Equation (11) now becomes:

$$
\begin{equation*}
m(\dot{w}+p v-q u)=m\left(a_{z}\right) \tag{12}
\end{equation*}
$$

All testing during this project was done wings level, so roll rate (p) is zero. The change in velocity (u) is assumed to be small, so $U=U_{0}$. Dividing each side by $m\left(U_{o}\right)$ gives:

$$
\begin{equation*}
\frac{\dot{w}}{u_{o}}-q=\frac{a_{z}}{u_{o}} \tag{13}
\end{equation*}
$$

Assuming small AOA gives the relationship:

$$
\begin{equation*}
\dot{\alpha}=\frac{\dot{\mathbf{w}}}{U_{\mathrm{O}}} \tag{14}
\end{equation*}
$$

which can be substituted into equation (13) and rearranged to give:

$$
\begin{equation*}
\dot{\alpha}=q+\frac{a_{z}}{U_{0}} \tag{15}
\end{equation*}
$$

where both pitch rate and normal acceleration are measured by the aircraft DAS. Assuming a finite time interval $\Delta t, \dot{\alpha}=\Delta \alpha$. An iterative equation can be formed where:

$$
\begin{equation*}
\alpha_{i+1}=\alpha_{i}+\Delta \alpha(\Delta t) \tag{16}
\end{equation*}
$$

Computer Program AOAOPT

A FORTRAN computer program was designed to calculate true AOA using both the angle relationship (equations (l) and (5)) and the iterative relationship (equations (15) and (16)). This program is called AOAOPT and is shown in Appendix B. The program reads the required flight test parameters from the DAS, makes necessary pitot-static corrections, calculates true AOA using both methods, and calculates the AOA position error correction factor (from equation (2)). The program works with flight test data from either USAF TPS T-38As or RF-4Cs. No data filtering is accomplished.

Results

Sample RF-4C flight test data from 1 g , wings level flight was processed by the program AOAOPT. Test data was sampled at the highest rate possible for the aircraft DAS, 8 times per second (a complete DAS description is in Chapter IV). Figure 3 is a plot of the AOA calculated using the angle relationship. The calculated AOA was very sensitive to noise in the altitude channel and was only accurate by averaging over a time span of 3 to 4 seconds in 1 g , wings level flight.

Figure 3. True AOA Calculated Using the Angle Method With Unfiltered

$$
\dot{m}
$$

Figure 4 is a plot of the $A O A$ calculated using the iterative method. The resulting AOA is less subject to noise, as the pitch rate and normal acceleration channels were fairly noise free. The data pitch rate and normal acceleration values were also corrected for bias measured while on the ground (bias was measured from 0 deg/sec pitch rate and $1 g$ normal acceleration). The major problem with the iterative method is its initial value, α_{o}, which must be calculated beforehand. The program AOAOPT uses as α_{0} the AOA calculated from the angle relationship averaged over a time interval of 3 to 4 seconds of 1 g flight. However, the AOA values are still corrupted by noise and are only as good as the resolution of the DAS. Some type of filtering is needed to optimize the true AOA.

47TM роч7əW ast7exə7I ə Unfiltered Data Compared to Measured AOA From the Aircraft AOA Sensor
III. State Estimation

State Equations

In order to use a digital computer to filter the flight test data and compute an "optimal" true AOA, the system dynamics need to be modelled (6:174). One way to model the system is with linear differential equations of the form:

$$
\begin{align*}
& \underline{x}(t)=\underline{F}(t) \underline{x}(t)+\underline{B}(t) \underline{u}(t) \tag{17}\\
& \underline{z}(t)=\underline{H}(t) \underline{x}(t) \tag{18}
\end{align*}
$$

where $\underline{x}(t)$ is the state vector, $\underline{u}(t)$ is the control input, and $\underline{z}(t)$ is the measurement history. One differential equation for angle-of-attack comes from equation (15):

$$
\begin{equation*}
\dot{\alpha}=q+\frac{a_{z}}{u_{0}} \tag{15}
\end{equation*}
$$

Another equation to use in the state equations is the pitch rate equation valid for wings level flight:

$$
\begin{equation*}
\dot{\theta}=q \tag{19}
\end{equation*}
$$

Since α and θ are not directly related, they become functions of the inputs q and a_{z}. The only useful parameter to measure is pitch angle, θ, since the measured $A O A$ has an undetermined position error. Combining equations (15) and (19) together gives the state equations:

$$
\left[\begin{array}{l}
\dot{\alpha} \tag{20}\\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\theta
\end{array}\right]+\left[\begin{array}{ll}
1 & \frac{1}{U_{0}} \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
q \\
a_{z}
\end{array}\right]
$$

The measurement equation is:

$$
\left[\begin{array}{l}
\theta_{m}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \quad\left[\begin{array}{l}
\alpha \tag{21}\\
\theta
\end{array}\right]
$$

The above equations define the matrices $E(t), \underline{B}(t)$, and $H(t)$. This is the math model to compute a true AOA, but nothing in the model filters the noise in the data.

Kalman Filtering
A Kalman filter provides the best method to "optimize" the true AOA from available flight test data. A Kalman filter will combine the pitch angle measurements, plus prior knowledge about the system and measuring devices, to produce an estimate of true $A O A$ in such a manner that the error in true AOA is minimized statistically (7:5). The filter uses the state equations plus a statistical description of the system noises, measurement noises, and uncertainty in the dynamics model (7:4). The Kalman filter assumes that the system can be described by a linear model, and that system and measurement noises are white and Gaussian (7:7).

The original system model, equations (17) and (18), is augmented by (7:146):

$$
\begin{align*}
& \underline{x}(t)=\underline{F}(t) \underline{x}(t)+\underline{B}(t) \underline{u}(t)+\underline{G}(t) \underline{w}(t) \tag{22}\\
& \underline{z}(t)=\underline{H}(t) \underline{x}(t)+\underline{v}(t) \tag{23}
\end{align*}
$$

where the system is now driven by the input vector $\underline{u}(t)$ and noise vectors $\underline{w}(t)$ and $\underline{v}(t)$.

The vector $w(t)$ models the system noise as white and Gaussian with mean of zero and strength \tilde{q}, described as (7:154-155):

$$
\begin{gather*}
E[\underline{w}(t)]=0 \tag{24}\\
E\left[\underline{w}(t) \underline{w}^{T}(t+\tau)\right]=\tilde{q} \delta(\tau) \tag{25}
\end{gather*}
$$

where \tilde{q} is a measure of the uncertainty in the input vector $\underline{u}(t)$. The noise in the values from the aircraft DAS is assumed to be white since it is random and uncorrelated.

The vector $\underline{v}(t)$ models the measurement noise as white and Gaussian with mean zero and strength \tilde{r}, described as (7:174):

$$
\begin{gather*}
E[\underline{v}(t)]=0 \tag{26}\\
E\left[\underline{v}(t) \underline{v}^{T}(t)\right]=\underline{R} \tag{27}
\end{gather*}
$$

where R is a measure of the uncertainty in the measurement vector $\underline{z}(t)$.

In order for the Kalman filter to propogate the system, the estimated state vector (denoted by ${ }^{\wedge}$) must be given an injtial condition, $x\left(t_{0}\right)$, where (6:233):

$$
\begin{gather*}
E\left[\underline{x}\left(t_{0}\right)\right]=\underline{\hat{x}}\left(t_{0}\right) \tag{28}\\
E\left[\left[\underline{x}\left(t_{0}\right)-\underline{\hat{x}}\left(t_{0}\right)\right]\left[\underline{x}\left(t_{0}\right)-\underline{x}\left(t_{0}\right)\right]^{T}\right]=\underline{P}\left(t_{0}\right) \tag{29}
\end{gather*}
$$

The equations to propogate and update the optimal estimate using Kalman filtering are fully derived in Stochastic Estimation and Control Systems (6:210-233). Since
the matrix $F(t)$ is a zero matrix (equation (20)), the propogation equations from a measurement at time t_{i-1} to time t_{i} become:

$$
\begin{gather*}
\left.\hat{x}\left(t_{i}^{-}\right)=\hat{x}\left(t_{i-1}^{+}\right)+\Delta t \underline{B}\left(t_{i}\right) \underline{i}\right) \tag{30}\\
\underline{P}\left(t_{i}^{-}\right)=\underline{P}\left(t_{i-1}^{+}\right)+\Delta t \underline{G}\left(t_{i}\right) \underline{Q} \underline{G}^{T}\left(t_{i}\right) \tag{31}
\end{gather*}
$$

where - denotes prior to the update and ${ }^{+}$denotes after the update. The matrix $\underline{B}_{(}\left(t_{j}\right)$ is defined in equation (20). Matrix $\underline{G}\left(t_{j}\right)$ is set equal to $\underline{B}\left(t_{i}\right)$ so the noise in the input vector, $\underline{u}\left(t_{i}\right)$, is modeled by the values in matrix \underline{Q}. \underline{Q} becomes a 2×2 matrix which contains the uncertainties in the inputs q and a_{z}. These two inputs are assumed independent, therefore Q becomes a diagonal matrix of the form:

$$
\underline{Q}=\left[\begin{array}{cc}
\sigma^{2} q & 0 \tag{32}\\
0 & \sigma^{2} \\
a_{z}
\end{array}\right]
$$

where the diagonal values are constant with time.
The update equations at measurement time t_{i} are:

$$
\begin{gather*}
\underline{K}\left(t_{j}\right)=\underline{P}\left(t_{i}^{-}\right) \underline{H}^{T}\left(t_{i}\right)\left[\underline{H}\left(t_{i}\right) \underline{P}\left(t_{i}^{-}\right) \underline{H}^{T}\left(t_{i}\right)+\underline{R}\right]^{-1} \tag{33}\\
\hat{X}\left(t_{j}^{+}\right)=\underline{x}\left(t_{i}^{-}\right)+\underline{K}\left(t_{i}\right)\left[\underline{Z}\left(t_{i}\right)-\underline{H}\left(t_{i}\right) \underline{x}\left(t_{i}^{-}\right)\right] \tag{34}\\
\underline{P}\left(t_{i}^{+}\right)=\underline{P}\left(t_{i}^{-}\right)-\underline{K}\left(t_{i}\right) \underline{H}\left(t_{i}\right) \underline{P}\left(t_{i}^{-}\right) \tag{35}
\end{gather*}
$$

The matrix $\underset{H}{ }\left(t_{i}\right)$ is defined in equation (2l). $K\left(t_{i}\right)$ is the gain matrix which specifies how much the measurement, $\underline{Z}\left(t_{i}\right)$. is weighted in the update. $\quad R$ is a $1 \times l$ value modelling the
noise in the measurement, $\underline{Z}\left(t_{j}\right)$, which is pitch angle. \underline{R} is in the form:

$$
\underline{R}=\left[\begin{array}{ll}
& \tag{36}\\
0^{2} & \\
& \\
&
\end{array}\right]
$$

and is also constant in time.
The Kalman filter is ready to be put into a digital computer routine. Equations (30), (31), (33), (34), and (35) will propogate and update the system over time. The matrix $\underline{x}\left(t_{j}{ }^{+}\right)$contains the "optimal" values for α and θ, of which α is the "optimal" true AOA desired. Before the routine can be implemented, the Kalman filter must be "tuned" to determine the values for $\underline{P}\left(t_{0}\right), \underline{Q}$, and \underline{R}.

Filter Tuning

The objective of filter tuning is to achjeve the best possible estimation performance from a filter that is totally specified except for $\underline{P}\left(t_{0}\right), \underline{Q}$, and \underline{R}. The covariance values in those matrices account for the actual noises and disturbances in the system and determine how adequately the model represents the real world system. The $\underline{p}\left(t_{0}\right)$ matrix determines the initial performance of the filter, and the \underline{Q} and \underline{R} matrices determine the long term performance (7:337).

The method of filter tuning used here is "covariance analysis" (7:337-339). The filter program is run with some assumed covariance values in the three matrices, $\underline{P}\left(t_{0}\right), \underline{Q}$, and R. The "true" root mean squared (rms) error, which is the error at each update between the filter's estimate and the
actual measurement, is plot ed over time. The time history of the computed rms error, or what the filter calculates as its error, is plotted with the true error.

Figure 5. An Example of Kalman Filter Tuning Through
Covariance Analysis $(7: 338)$

Figure 5 is an example of what these plots show. Plot 5 (a) shows a filter that has a low computed error and weighs
the measurement too little. Plot $5(b)$ shows a filter that has too high a computed error and weighs the measurements too much. Plot $5(c)$ shows a filter that is just right - its computed error and true error are equal (7:339). For the Kalman filter used in this project, the values of $\underline{P}\left(t_{o}\right), \underline{Q}$. and R were varied until the computed rms errors and true rms errors were about equal. The Kalman filter was complete and ready to filter test data.

Computer Program KALOPT

A FORTRAN computer program was designed to calculate an "optimal" true AOA using the Kalman filter equations. This program is called KALOPT and is shown in Appendix C. The program reads the required flight test parameters from the DAS, makes necessary pitot-static corrections, and calculates an "optimal" true AOA each iteration. The program works with flight test data from either USAF TPS T-38As or RF-4Cs.

The Aydin-Vector DAS does not read normal acceleration, a_{z}, but instead reads normal load factor, n_{z}. The sign of n_{z} is opposite from the standard body axis system: positive n_{z} is through the top of the canopy. Also, n_{z} includes acceleration due to gravity. The following equation, which assumes small pitch and roll angles, corrects n_{z} to a_{z} :

$$
\begin{equation*}
a_{z}=-\left(n_{z}-1\right) 32.2 \tag{37}
\end{equation*}
$$

The Kalman filter needs to know the initial values for AOA and pitch angle to use as $x\left(t_{0}\right)$. KALOPT uses the first

DAS value for pitch angle as θ_{0}. However, an initial AOA needs to be calculated since the DAS AOA values have the yet-to-be-determined position error. The value of α_{0} is calculated using the angle method (equations (1) and (5)) used in the program AOAOP'r. It averages the unfiltered true AOAs over a 3 to 4 second period in g flight to calculate α_{0}. KALOPT calculated the computed and true rms errors after each iteration. The values were varied from 0.001 to 1.0 during the covariance analysis. Changing the values of $P\left(t_{0}\right)$ changed the initial rms values, but had little effect on the overall results. When the \underline{Q} values were increased, the measurement was weighted more; the true rms error was less than the computed rms error. Increasing the R value caused the measurement to be weighted less; the true rms error was greater than the computed rms error. These results agreed with the theory behind filter tuning. Based on the covariance analysis conducted using $T-38 A$ data, the following values caused the true and computed errors to be equal:

$$
\begin{aligned}
\underline{p}\left(t_{0}\right) & =\left[\begin{array}{ll}
0.100 & 0 \\
0 & 0.030
\end{array}\right] \\
\underline{Q} & =\left[\begin{array}{ll}
0.025 & 0 \\
0 & 0.002
\end{array}\right] \\
\underline{R} & =[0.300]
\end{aligned}
$$

KALOPT reads in the covariance values from a separate file, so they can be easily changed without changing the program.

Results

The first attempt at Kalman filtering included another state equation formed by combining equations (1) and (5):

$$
\dot{h}=(\theta-\alpha) U_{0}
$$

The DAS altitude readout was used as a measurement along with pitch angle. Unfortunately, the noise of the altitude transducer in the $T-38 A$ DAS was too erratic and could not be modelled as Gaussian. Altitude was not used in KALOPT.

The program KALOPT processed the same RF-4C flight test data that was used in Chapter II. The test data was sampled 8 times per second. Figure 6 is a plot of the "optimal" true AOA calculated by KALOPT from that data. The measured AOA and the unfiltered true AOA calculated by AOAOPT are also shown. The "optimal" true $A O A$ is quicker to return to a steady state value than the unfiltered true $A O A$. It is impossible to tell which $A O A$ is more accurate as the actual true $A O A$ is unknown.

A better way to see how the Kalman filter is working is to compare the measured pitch angle to the "optimal" pitch angle to see how well it filters over noise and resolution increments. Figure 7 is a plot of measured pitch angle and "optimal" pitch angle. The measured pitch angle only had a resolution of 0.7 degrees, and after two samples it immediately increased by that amount. The "optimal" pitch angle is a fairly smooth curve over the time span, which shows that the Kalman filter is working. The next step is to use flight test data to calculate the AOA position error.

Figure 6. Optimal True AOA Calculated by the Kalman Filter Compared to Measured $A O A$ and Unfiltered True AOA
USAF RF-4C PHANTOM II
GROSS WEIGHT: 38 SQQ
40 QQQ FEET PRESSURE FIT
FLIGHT TEST DRTA to Measured Pitch Angle

$$
\text { CG: } \begin{array}{r}
S / N 65-0941 \\
30.3 \% M A C \\
M A C H \\
28.89 \\
28 Y 85
\end{array}
$$

Figure 7. Optimal Pitch Angle Calculated by the Kalman Filter Compared

IV. Flight Test

Test Item Description
The test aircraft was a USAF TPS T-38A Talon. The T-38A is a two place (tandem) jet trainer which is used extensively in the TPS curriculum. The aircraft is powered by two J35-GE-5 turbojet engines which give it a maximum capability of Mich 1.2 in level flight (8:6-6). Figure 8 is a photograph of a $T-38 A$ used at the TPS. A single $T-38 A$, serial number (S / N) 68-8205, was used for all data flights in this project. Statistics on that airplane are shown in Table I. An important measurement is the distance from the cg of the aircraft to the $A O A$ measuring vane, 25 feet. This length (x_{α})

Figure 8. USAF T-38A Talon
is used to correct the true $A O A$ for pitch rate (see equation (3)). The cg of the $\mathrm{T}-38 \mathrm{~A}$ only shifts 0.3% mean aerodynamic chord (MAC) while consuming fuel, which is only 0.25 inches. Therefore, the $\Delta c g$ term from equation (3) can be neglected.

TABLE I
USAF T-38A Talon Statistics (S/N 68-8205) ${ }^{1}$

${ }^{1}(8: 1-1)$

The test $T-38 A, S / N$ 68-8205, was modified for flight
testing. The most important modification concerning this project is a fully instrumented yaw and pitch system (YAPS) noseboom (9:A.1), shown in Figures $9(a)$ and $9(b)$. A complete diagram of the YAPS noseboom is in Appendix E. The YAPS noseboom has two vane-type sensors, one for AOA and one for sideslip angle. These vanes are in front of the fuselage,

(a)

0 •

Figure 9. T-38A Yaw and Pitch System Noseboom
away from the aerodynamic influence of the aircraft, so the AOA (and sideslip) position errors should be less than for fuselage mounted sensors.

The YAPS noseboom on the $T-38 A$ is made out of aluminum alloy. It has been structurally tested up to 8.3 g and only minimal bending resulted (9:D.43-D.53). As a result, bending was ignored during this evaluation. The YAPS noseboom is canted 4 degrees down from the aircraft centerline.

Instrumentation

An internal Aydin-Vector SAU-537 DAS was installed in the aircraft to measure flight test parameters. The following components of the DAS were used in this project: a vertical gyro installed in the nose section to measure pitch and roll angles; a three axis rate gyro installed in the nose section to measure pitch, roll, and yaw rates; a three axis accelerometer installed in the center fuselage (at the nominal cg location) to measure acceleration in the x, Y, and z axes (10:1.1-1.8). Other instruments were installed in the aircraft for flight test, but they were not used in this project.

The test aircraft was equipped with an internal Conrac ATR-580T70 magnetic tape recorder in the aft cockpit to record the data parameters (9:A.1). Forty-eight data channels were recorded. Indicated airspeed and altitude were recorded with 16 bit precision, the other parameters for this project had 8 bit precision. Table II is a summary of the parameters used
in this project with their maximum/minimum values, precision, and accuracy. The parameters were recorded 8 times per second.

TABLE II
Summary of Flight Test Parameters ${ }^{1}$
USAF T-38A S/N 68-8205
Aydin-Vector SAU-537 DAS

Parameter	Units	Min Value	Max Value	Resolution	Accuracy
Altitude	feet.	0	65000	1.030	0.103
Airspeed	knots	0	1250	0.019	0.0019
AOA	degrees	-22	28	0.202	$* 0.101$
Sideslip	degrees	-20	20	0.164	0.082
Pitch	degrees	-80	80	0.704	0.704
Roll	degrees	-180	180	1.408	2.816
Pitch Rate	deg/sec	-20	20	0.163	0.163
N_{Z}	g	-3	6	0.037	0.0037

1 (9:5..4)

* Actual accuracy $+/-0.5$ degrees due to hysteresis

Before any flight test was performed, all of the DAS instruments were ground calibrated and their calibration files updated. All important instruments were found to be working correctly except for the AOA transducer. It had a large hysteresis problem due to wear on its internal gearing. This hysteresis is shown in Figure 10. There is $a+/-0.5$ degree error in true $A O A$ depending on whether the vane is moving up or down. The AOA transducer was designed in the 1960 s , and no replacement parts are available. The worn gears could not be fixed or replaced. This hysteresis will have a large effect on the flight test data.

Figure 10. Hysteresis Error in T-38A Angle-of-Attack Transducer

The purpose of the flight testing was to gather data to calculate true $A O A$ and to see what factors affected the AOA position error. AOA position error is primarily a function of $A O A$, therefore the testing covered large AOA changes. Other possible factors that were considered in designing the maneuvers were Mach number, Reynold's number, and sideslip angle. All testing was conducted wings level due to the assumptions used in the AOA equations (see Chapter II).

Since Reynold's number was a possible factor, testing was performed at different altitudes. Due to the altitude restrictions of available supersonic airspace, 25,000 feet and 15,000 feet were chosen for the testing. In order to see the effects of sideslip on $A O A$, the first maneuver to be performed was a wings level, slowly varying sideslip using maximum rudder deflection in both directions. Thrust was varied to maintain Mach number constant. This maneuver was performed at different Mach numbers. Actual data points are shown in Appendix D (11:3).

After the sideslip maneuver, a roller coaster maneuver was performed to vary $A O A$ as much as possible. From a 1 g trim condition, the aircraft nose was pulled up slightly, then pushed forward to the minimum load factor specified for that data point. An onset rate of 3 seconds per g minimum was desired throughout the maneuver. At the minimum load factor, the aircraft nose was pulled back to the maximum load factor
specified for that data point. The aircraft nose was then pushed forward to regain 1 g level flight. All data points and load factor limits are in Appendix D (11:3). Thrust was varied to maintain constant Mach number during the maneuver.

All testing was performed in the cruise configuration (gear and flaps up) with no external stores. All T-38A Flight Manual (8) limitations were complied with. Additional restrictions in the $T-38 A$ AOA Position Error Test Plan (11) were followed.

Test Results
Three $T-38 A$ test flights were flown at the USAF Flight Test Center, Edwards AFB, California. A summary of these flights is shown in Appendix D. No data were gathered on one flight due to bad weather. The same aircraft, 68-8205, was used on all three flights due to scheduling availability. Future test programs using this method should fly different tail numbers to prevent bias from one aircraft's own peculiarities.

The wings level sideslip maneuver was performed at all data points. The maximum sideslip angle generated was $+/-3.8$ degrees at 25,000 feet pressure altitude (H_{c}). Mach 0.45. No change in $A O A$ was found at this point or any of the others. In wind tunnel testing performed on a Conrac NBIU, a noseboom similar to the $T-38 A$ YAPS noseboom, no AOA position error change was discovered until five degrees of sideslip (3:38-39).

The roller coaster maneuver was performed at all data points, and repeated at the 25,000 feet H_{c} points. The data was reduced using the FORTRAN program KALOPT (see Chapter III). Measured AOA was plotted against the "optimal" true $A O A$ (henceforth referred to as true $A O A$) at each point tested. These plots are Figures 12 - 29, Appendix A. The data points plot out fairly linear, which shows that the equations and Kalman filtering worked. Most of the test points flown up to 6 g were terminated at that point due to the Mach number decreasing outside tolerances (+/- 0.02 Mach desired). Also, at many of the high g points the data trace becomes erratic. This was due to aerodynamic buffet. Future test maneuvers for this method do not have to go to such high g limits, as the data collected at lower g limits is satisfactory.

As expected, the hysteresis error due to mechanical lag in the AOA gears was evident in the results. All eighteen plots show two lines of data, depending on whether the AOA vane was moving down or up. The error between the two lines ranges from $+/-0.5$ to $+/-0.8$ degrees, similar to the hysteresis error in Figure 10. In order to average the error, a straight line was drawn down the middle of the two lines. The slope of this line is the AOA position error correction factor, K_{α} (from equation (2)). The x-axis intercept, ${ }^{\alpha_{O}}{ }_{T}$, was also determined from these plots. These values are summarized in Table III. The Reynold's numbers were calculated using MAC (7 feet) as the constant length.

TABLE III

Summary of Flight Test Results

Date of Elight	Altitude (feet)	Mach	Reynolds \# $\left(x 10^{7}\right)$	K_{α}	
23 Jul 85:	25,000	0.84	1.99	1.26	1.25
	25,000	0.94	2.23	1.38	0.60
	25,000	0.98	2.30	1.32	2.00
	25,000	1.07	2.51	1.48	2.30
	25,000	0.62	1.46	1.16	1.20
	25,000	0.44	1.03	1.16	1.20
23 Jul 85:	15,000	0.83	2.69	1.10	1.60
	15,000	0.94	3.03	1.14	3.20
	15,000	0.96	3.10	1.33	1. 20
	15,000	1.07	3.44	1.45	0.90
	15,000	0.64	2.08	1.30	0.80
	15,000	0.42	1.35	1.20	1.90
26 Jul 85:	25,000	0.81	1.90	1.10	1.10
	25,000	0.92	2.16	1.20	2.00
	25,000	0.96	2.24	1.30	*-1.9
	25,000	1.06	2.47	1.36	2.20
	25,000	0.65	1.53	1.16	0.70
	25,000	0.44	1.03	1.20	0.50

* Exceeds 2 standard deviations from mean

The values for K_{α} are plotted versus Mach number in Figure ll. A curve was drawn through the points and shows a large increase in K_{α} as Mach number increases above 0.8. No apparent Reynold's number effects in K_{α} are evident in comparing the 15,000 feet points to the 25,000 feet points. The K_{α} values from the Conrac NBIU wind tunnel testing are also plotted in Figure $11(3: 38)$. Although the shapes of the curves are similar, the values for K_{a} are different. Since

Figure 11. T-38A Angle-cf-Attack Position Error Correction Factor for Vought YAPS Noseboom
UHd7*-X
both nosebooms are so similar in size and shape, the difference is mainly due to the lack of fuselage and wing effects on the wind tunnel results.

Equation (2), the equation to calculate true $A O A$, is:

$$
\begin{equation*}
\alpha_{c}=\frac{\alpha_{m}}{K_{\alpha}}+\frac{q\left(x_{\alpha}+\Delta c g\right)}{U}-\frac{p\left(Y_{\alpha}\right)}{U} \tag{2}
\end{equation*}
$$

For $T-38 A$ 68-8205, $\left(x_{\alpha}+\Delta c g\right)$ is assumed a constant 25 feet. Y_{α} is 6 inches (see Appendix E). The values for K_{α} are shown in Figure 11 as a function of Mach number. However, equation (2) assumes that no AOA position error exists at zero degrees AOA. According to Figures 12 to 29 , this is not true for the T-38A. Some bias exists, which is the x-axis intercept, ${ }^{\alpha_{0}}{ }_{\mathrm{O}}^{\mathrm{T}}$. Adding this bias to equation (2), and neglecting pitch and roll rate, gives:

$$
\begin{equation*}
\alpha_{C}=\alpha_{O_{T}}+\frac{\alpha_{m}}{K_{\alpha}} \tag{38}
\end{equation*}
$$

The values for ${ }^{\alpha_{0}}{ }_{T}$ from Figures 12 to 29 are shown in Table III. The values vary randomly, and do not seem to be functions of Mach number. The average of all 18 values is 1.26 degrees, with a standard deviation of 1.06 degrees. One value, for 25,000 feet H_{c} and Mach 0.96 , is -1.9 degrees, which exceeds two standard deviations from the mean. Neglecting that point as erroneous, the average of the
remaining values is 1.45 degrees, with a standard deviation of 0.73 degrees. The equation to solve for the true AOA of the T-38A with a Vought YAPS noseboom is:

$$
\begin{equation*}
\alpha_{c}=1.45+\frac{\alpha_{m}}{K_{\alpha}} \tag{39}
\end{equation*}
$$

The pitch and roll rate terms from equation (2) should be included when applicable.

All project objectives were met. Conclusions and recommendations follow in order of importance:

The Kalman filter program KALOPT calculated "optimal" true angle-of-attack (AOA) values for a $T-38 A$ Talon using equations of motion for wings level flight and pitch angle measurements. From these true AOA values, the AOA position error correction factors were determined and were found to be functions of Mach number. Only standard T-38A flight test instrumentation was used - no flight path accelerometers were needed. This method proved to be accurate in gathering data with minimal instrumentation over a large range of AOAs.

1. THIS STATE ESTIMATION/KALMAN FILTERING METHOD OF

CALCULATING AOA POSITION ERROR SHOULD BE CONSIDERED IN FUTURE AOA ERROR TESTING.

The Kalman filter needed an initial AOA to start propogating an "optimal" true AOA. This initial AOA was calculated from 1 g wings level flight prior to the roller coaster flight test maneuver. Also, aerodynamic buffet at high load factors caused some data scatter. The data gathered prior to the buffet were enough to calculate the AOA position error.
2. FUTURE MANEUVERS TO GATHER DATA FOR THIS METHOD SHOULD START FROM A 1 G TRIM SHOT FOR 3 TO 4 SECONDS. THE MANEUVERS SHOULD TERMINATE PRIOR TO AERODYNAMIC BUFFET.

The $T-38 A$ flight test data were not completely accurate due to hysteresis errors in the AOA transducer. The accuracy of the method would be better determined using an aircraft with no AOA hysteresis error. Also, testing with an aircraft with a fuselage-mounted AOA sensor would show larger AOA position errors and would further validate the method.
3. FURTHER TESTING SHOULD BE CONDUCTED USING AN RF-4C OR OTHER SUITABLE AIRCRAFT THAT HAS NO AOA HYSTERESIS ERROR AND HAS A FUSELAGE-MOUNTED AOA SENSOR.
4. THE USAF TEST PILOT SCHOOL NEEDS TO INSTALL NEW AOA TRANSDUCERS IN THEIR T-38A AIRCRAFT TO ELIMINATE THE AOA HYSTERESIS ERRORS.

Appendix A

Flight Test Results

Figure 15. T-38A Angle-of-Attack Position Error for a Vought YAPS Noseboom at 25,000 feet H_{c}, Mach 1.07
(930) หכ甘11甘-10-3า9N 03ynsy

(930) xJHIIt-J0-379N甘 O38חSHJW

Figure 17. T-38A Angle-of-Attack Position Error for a Vought YAPS Noseboom AT 25,000 feet H_{c}, Mach 0.44
(930) XJH11甘-J0-379N甘 038חSH3W

Figure 19. T-38A Angle-of-Attack Position Error for a Vought YAPS Noseboom at 15,000 feet H_{c}, Mach 0.94

$$
\begin{aligned}
& \text { USAF T- 38A TALON } \\
& \text { GAOSS WEIGHT: } \\
& 15 \text { OQG FEST PBS LBS } \\
& \text { FLIGHT TEST DATA }
\end{aligned}
$$

$$
\text { CG: } \begin{array}{r}
S / N 68-8205 \\
18.2 \% M A C \\
M A C H 1.07 \\
23 \text { JUL. } 85
\end{array}
$$

 $\ddot{3}$ USAF T-38A TALON
GROSS WEIGHT: 583 LBS
15 Q
FLIG FEET TEST ORSSURE ALT

Figure 22. T-38A Angle-of-Attack Position Error for a Vought YAPS Noseboom at 15,000 feet H_{C}, Mach 0.64 Figure 22.

$$
\begin{aligned}
& \text { Figure 23. T-38A Angle-of-Attack Position Error for a Vought } \\
& \text { YAPS Noseboom at } 15,000 \text { feet } H_{C} \text { Mach } 0.42
\end{aligned}
$$

（9コロ）$x コ \forall \perp 1 甘-\lrcorner 0-379 N \forall ~ ロ \exists \forall ก S 甘 \exists W$

Figure 24. T-38A Angle-of-Attack Position Error for a Vought
YAPS Noseboom at 25,000 feet H_{c}, Mach 0.81

 Figure 25. T-38A Angle-of-Attack Position Error for a Vought
YAPS Noseboom at 25,000 feet H_{C} Mach 0.92
(930) xコษ11甘-ร0-3า9N 03ynstaw

Figure 26. T-38A Angle-of-Attack Position Error for a Vought
YAPS Noseboom at 25,000 feet H_{c} Mach 0.96

$$
\text { YAPS Noseboom at } 25,000 \text { feet } H_{c} \text {, Mach } 1.06
$$

Figure 27. T-38A Angle-of-Attack Position Error for a Vought

$$
\text { CG: } \begin{array}{r}
S / N 68-8205 \\
18.2 \% M A C \\
M A C H \quad 0.65 \\
26 J U L 85
\end{array}
$$

Figure 28．T－38A Angle－of－Attack Position Error for a Vought YAPS Noseboom at 25,000 feet H_{c} ，Mach 0.65
（930）XJU11甘－」0－379NH 038חSHヨW

Figure 29. T-38A Angle-of-Attack Position Error for a Vought
YAPS Noseboom at 25,000 feet H_{c}, Mach 0.44
(9ヨ0) x

Appendix B
Computer Program AOAOPT

PROGRAM ADAOPT

 WRITE (5,120)
 120 FORHAT (' ENTER NFME OF DYNFMICS FILE: NWNNH.EDS', 1)
ACCEPT 110, (FILER(1), I=4,11)

WRITE (5, 136)
FORMAT (' ENTER NAME FOR DATA FILE 1: MNWNN.DAT', 1)
ACCEPT 110, (FILE3(I), I $=4,11$)
OPEN(UNIT $=3$, NAME $=$ FILE3, TYPE $=$ 'LNKNDINY')
WRITE(5, 14)
FORMAT (' ENTER NAME FOR DATA FILE r:': NNWNN.DAT', 1)
ACCEPT 110. (FILE4(I), I=4,11)
OPEN(UNIT:4, NPME-FIL.E4, TYPF: = 'UNKNOLNV')
WRITE (5, 15:\%)
FORMAT (' ENTER NAME FOR DAIFA FILE : : NMWNNY.DAT', ')
ACCEPT 110 , (FILEG(I) $I=4,11$)
OPEN(UNIT=6, NAME=FILEG,TYPE='UNKNDWH')
WRITE 5,1601
160 FORMAT (ENTER MUMBER OF DATA POINTS DESIRED ', 1)
170

PROGRAM AOAOPT IS A FURTRAN PROGRAM DESIGNED TO CALCULATE ANGLE-OF-ATTACK FROM PARAMETERS RECORDED INFLIGHT ON AN
AYDIN-UECTOR DATA ACQLISITTION SYSTEM. AOADPT USES TIME (TI), IAS (AS), INDICATED ALT (ALT), MEASURED AOA (AOA), PITCH
ANGLE (TH), PITCH RATE (Q), HORMPL ACCELERATION (ZN), SIDESLIP ANGLE (AOSS), AND BANK ANGLE (BA) OBTAINED FROM DYNAMICS EJJP AND EUS FILES. AOAOPT CORRECTS FOR PITOT-STATIC ERRORS TD DETERMINE PRESSURE ALTITUDE (HC), MACH NUMBER (AMC), AND
TRUE AIRSPEED (UTAS). THE PROGRRM CALCLLATES TRUE ADA BY TWO METHODS: ANGLE RELATIONSHIF WHERE AOA - PITCH - FLIGHT PATH, AND ITERATIUE METHOD LHERE AOA-DOT = PITCH RATE - NORMPL G. PROGRFM CAN BE USED WITH T-3BA OR RF-4C DATA.

BYTE PNAME (12), ENAME (12), DOF (7), ATYPE (5), ATAIL(3)
DIMENSION TI (300), AS (300), ALT (300), AOA 300$), \operatorname{TH}(300), Q(300)$,
1ZN(300), $\operatorname{AOSS}(300), \operatorname{BA}(300), H C(300), \operatorname{AMC}(300), \operatorname{UTAS}(300), \operatorname{AOR2}(300)$, 2AOA3 (300), $\operatorname{HDOT}(300), \operatorname{FPANG}(300)$, ADA1 (300), ERROR (300), ADOT (300). 3ADOTM (300), ERROR1 (300), ERROR2(300)
BYTE FILE1 (15). OFILE1 (17)
BYTE FILEL(15), OFILE2 (17)
BYTE FILE3 (15), OFILE3 (17)
BYTE FILE4(15), OFILE4(17)

-

120 FORMATT ' ENTER NAME OF DYNAMICS FILE: NWNWH.EUS',, ACCEPT 110, (FILER(1), I=4,11) OPEN(UNIT $=2$, NAME F FILEL,TYPE: $=$ 'LNNKNCLN') WRITE 5,136)
ACCEPT 110. FILEBM DPEN(UNIT $=3$, NPME $=$ FILES,TYPE: LUNKNOUN') WRITE (5; 143)
FORTMAT(' ENTER NAME FOR DATA FILE $\mathrm{c}^{\prime}:$: MNNNN.DAT', $/$) ACCEPT 110. (FILE4(I), I $=4,11$)
OPEN(UNIT=4, MAME-FIL.E4, TYPF: 'LANKNOWN') WRITE $5,15: 1$)
ACCEPT 110, (FILEG(I), $I=4,11$)
WRITE $5,16(1)$
FORMAT (' ENTER MUMBER OF DAT:A POINTS DESIRED $\cdot,<)$
READ (5, 170) it
FORMAT (15)

```
    WRITE(5,100)
    FORMAT ('ENTER FIRST LINE OF DATA DESIRED ' ,/).
    READ(5,190) M
    FORMAT (15)
    WRITE(5,192)
    FORMAT ('ENTER NLMBER OF INITIAL CONSTANT AOR LINES: ",)
    READ(5,195) NA
    FORMAT(IS)
    WRITE{5,200)
200 FORMAT(' ENTER CORRECTIONS FOR PITCH RATE AND NZ: XXX,YYY',%
    1; CORR ARE FROM GROUND BLOCK, ABONE/BELOWN O FOR Q',%,
        READ(5,210)OCORR, ZNCORR
        FORMAT(2F10.3)
    THIS PORTION READS DATA FROM THE DYNAMICS EUP AND EUS FILES
        AND FORMATS THREE DATA FIL.ES (XXXX.DAT) WHERE THE PROGRAM
    RESULTS WILL BE SENT. DATA FILE #1 RECORDS THE RAN DATA FROM
        THE EUP AND EUS FILES. DATA FILE #Z CONTAINS AOA COMPUTED
    BY THE ANGLE METHOD. DATA FILE #3 CONTAINS AOA COMPUTED BY
        THE ITERATIUE METHOD.
        READ (1,220)PNMME, ENPME,DOF
        FORMAT (8X,12A1,15X,12A1,21X,7R1)
        WRITE (3,230)PNAME, ENAME,DOF
        WRITE (4,230)PNAME, ENAME,DOF
        WRITE (6,230) PNAME, ENAMME, DOF
        FORMAT ('PILOT:',1X,12A1,5X,'ENGINEER'',1X,12A1,5X,
    1'DATE OF FLIGHT:',1X,7A1)
        READ (1,240)ATYPE,ATAIL
        FORMAT (11X,5A1,13X,3A1)
        WRITE (3,250)ATYPE, ATAIL
        WRITE (4,250)ATYPE, ATAIL
        WRITE (6,250)ATYPE,ATAIL
        FORMAT('A/C TYPE:',1X,5A1,5X,'TAIL #:',1X,3A1)
        WRITE (3,260)
        FORMAT (//,7X,'LINE',6X,'TIME',2X,'AIRSPEED',2X,'ALTITUDE',7X'
        1'AOA',5X,'PITCH',2X,'PITCH RT',8X,'NZ',GX,'ROSS',ZX,'ROLL ANG')
        WRITE (4,270)
270 FORMAT (//,7X,'LINE',6X,'TIME',1X,'PRESS ALT',6X,'MACH',3X,'TRUE
    1 AS',7X,'ROC', ZX,'FLT PATH',5X, 'AOA-1',5X,'AOA-M',5X,'ERROR' )
        WRITE (6, 280)
        FORMMAT ( }//,7X,'LINE',6X,'TIME', 4X, 'A-DDOT1', 4X, 'A-DOTM',5X,'AOA-2',
        15X,'AOR-M',5X,'ERROR',5X,'ADA-3',5X,'ROA-T',5X,'ERROR',3X,
        2'K-ALPHA')
        WRITE (3,290)
        FORMAT (16X,'(SEC)',3X,'(KNOTS)', 4X,'(FEET)',5X,'(DEG)',
    15X,'(DEG)',1X,'(DEG/SEC)',7X,'(G)',5X''(DEG)',5X,'(DEG)',l)
        WRITE (4,300)
        FORMAT (16X,'(SEC)',4X,'(FEET)',12X,'(FT/SEC)', 2X,
        1'(FT/SEC)',5X,'(DEG)',5X,'(DEG)',5X,'(DEG)',5X,'(DEG)',\prime)
        WRITE(6,310)
        FORMAT (16X,'(SEC)',1X,'(DEG/SEC)',1X,'(DEG/SEC)',5X,'(DEG)',
            15X,'(DEG)',5X,'(DEG)',5X,'(DEG)',5X,'(DEG)',5X.'(DEG)',N)
            RERD (1,320)
            FORMAT (/,/,/)
```

```
        RERD (2,330)
PION PERFORMS THE PITOT-STATIC CORRECTIONS TO COMPUTE
PRESSURE ALT, MACH NUMEER, AND TRUE AIRSPEED. IT USES THE
STANDARD PITOT-STATIC EQUATIOAYE AND ERROR COEFFICIENTS FROM THE USAF TEST PILOT SCHOOL FILES.
DO \(710 \quad 1=1\), N
IF(ALT(I) .GT. 36089)ED TO 500
DELTA \(=(1-(6.87559 E-6 * A L T(I))) * * 5.2561\)
THETA \(=1-(6.87559 E-6 * A L T(I))\)
GO TO 510
DELTA \(=.22337 * E X P(-4.80635 E-5 *(\) PLLT (1)-36089) )
THETA \(=.751874\)
IF (AS (I) GT. 661.49) 60 TO 520
QCICPA \(=((1+(.2 *((A S(I) / 661.48) * * 2))) * * 3.5)-1\)
GO TO 530
QCICPS=OCICPA/DEL TA
AMIC=SQRT(5*(((QCICPS+1)**(.28S7143))-1))
IF (ATYPE (1) .EQ. T') 100 TO 600
DHPC=(-907+(10270*AMIC)+(-44495*(AMIC**2))+(93931*(AMIC**3))
\(1+(-95540 *(\) AMIC**4) ) \(+(37288 *(\) MMIC**5) ) ) *THETA
IF (AMIC.GT. 1) DHPC=0
GO TO 700
600 IF (AMIC .LT. . 955 ) 60 TO 620
IF (AMIC .LT. .967)GO TO 640
IF (AMIC.LT. i.02S)EO TO 660
C0=-46325
C1=82583
C2=-36667
EOT0 680
```

 C0=118
 C1=-47
 640 C0=2676675
C0=2676675
C1=-563678
G0 T0 680
660 CO=-141471
C1=308123
GOTO 680
680 DHPC=(CQ+(C1*PMIC)+(C2*(AMIC**2)))*THETA
700 HC(1)=ALT (I)+DHPC
DPPPS=(3.613@2E-5*DHPC)/THETA
DMPC=((1+(.2*(AMIC**Z)))*DPPPS)/(1.4*PMIC)
AMC (I) =AMIC+DMPC
UTAS(I)=1.6878*AMC(I)*38.96763*SGRT(THETA*Z88.15)
COIYTINUE
THIS PORTION COMPUTES TRUE ACIP BY THE ANGLE METHOD. FLIGHT
PATH PNGLE IS CRLCULATED BY:
FLIGHT PATH ANGLE (FPANG) = INU SIN [UERTICPL UEL (HDOT) /
TRUE AIRSPEED (UTAS)]
TRUE AOA IS CALCLLATED BY: ADA = PITCH ANGLE - FLT PATH
ADA IS THEN ANERAGED OUER A TIME INTERUAL FOR USE AS
THE INITIAL AOA FOR THE ITERATIUE METHOD
DO 750 I=1,1\&
IF(I .EG. 1)GOTO 720
1F(I .EQ. NA)GO TO 720
DTIME=TI(IT+1)-TI(I-1)
DALT=HC(I+1)-HC(I-1
HDOT(I)=DALT/DTIME
FPANG(I) =ASIN(HDOT (I) NTAS(I))
FPPNGG(1)=FPANG(I)*5?.29578
AOR1(I)=(THC(I)-FPANG(I))/COS(BA(1)/57.29578)
ERROR(I)=AOA1 (I)-AOR (I)
WRITE(4,740)I,TI(1),HC(I),AMC(1),UTAS(I),HDOT(I),FPPANG(I),
1AOA1 (I),ADA(I),ERROR(I)
FORMAT(1X,110,9F10.3)
CONTINUE
THIS PORTION AUERAGES THE ALTITUDE, MACH, PITCH,
PITCH RATE, NZ, AOA-MEAS; ADA-CALC, AND ERROR
DO 752 I=2,NA-1
DTIME=TI(I+1)-TI(I-1)
TALT=TALT+(HC(I)*DTIME)
TMACH=TMACH+(AMC(I) *DTIME)
TTH=TTH+(TH(I)*DTIME)
TQ=TQ+(Q(I)*DTIME)
TNZ=TNZ+(ZN(1)*DTIME)
TAOA=TADA+(AOA(I *DTIME)
TAOA1-TAOA1 + (AOA1 (I) *DT 1ME)
TERROR=TERROR+(ERROR(I)*DTIME)

```

TTIME－TTIME＋DTIME CONTINVE
ARLT＝TALT／TTIME AMPCH＝TMACH TTIME ATH \(=\) TTH \(/\) TTIME AGOTQ／TTIME ANZ＝TNZ／TTIME AAOA＝TAOA TTIME AAOA1＝TAOA1 \(/\) TTIME AERROR＝TERROR／TTIME DO \(7551=2, N(1\) \(\times \mathrm{CLT}=\mathrm{ARLT}+\mathrm{HC}(I)\) XMACH＝AMACH－AMC（I） \(\times\) TH \(=\) ATH－TH（1） \(X Q=R Q-Q(I)\) \(\times N Z=A N Z-Z N(1)\) XAOA＝AMOA－AOA（ I ） XADA1－AAOA1－AOA1（ 1 ） XERROR＝AERROR－ERROR（I） X \(A L T=\) RBS（ \(X A L T\) ） XMACH＝ABS（XMACH） \(X T H=A B S(X T H)\) \(X Q=A B S(X Q)\) XNZ＝ABS（XNZ） XAOA＝ABS（XAOA） XAOA1－ABS（XADA1） XERROR＝ABS（XERROR）
IF（XALT GT．YALT）YALT＝XALT
IF（XMACH ．GT．YMACH）YMACH＝XMACH
IF（XTH ．GT．YTHIYTH＝XTH
\(\operatorname{IF}(X Q . G T . Y Q Y Q=X Q\)
IF（XNZ ．GT．YNZ）YNZ＝XNZ
IF（XAOA ．GT．YROR Y YROA \(=\) XAOA
IF（XAOA1 GT．YAOA1 YYAOA1 \(=\times F A O A 1\)
IF（XERROR ．GT．YERROR）YERROR＝XERROK
CONTINUE
WRITE（4，758）AALT，YALT，AMACH，YMACH，ATH，YTH，AQ，YQ，ANZ，YNR， 1AAOA1，YACA1，AACA，YADA，AERROR，YERROR

```

1F10.3,', +/-,'F6.3,/; RUG PITCH = ,F10.3,' +/-,'FG.3.
2' ANG PITCH RATE = ',F10.3,' +/-,'F6.3,' ANG NZ =',
3F10.3;', +/工',FG.3./,' AVG ADA-1 = ',F10.3,' +/-,'F6.3,
4, AVG ROAMM, =,'F10.3

```

THIS PORTION COMFUTES THE AOA OF THE REMAINING
POINTS BY COMPUTING FLIGHT PATH ANGLE，THEN USING：AOA＝PITCH ANGLE－FLIGHT PATH ANGLE

IF（ N ．EQ．NA）GO TO 772
DO \(7701=N A+1, N\)
IF（I EQ．N）GO TO 7EO
DTIME＝TI（I＋1）－TI（I－1）
DALT \(=H C(1+1)-H C(1-1)\)
HDOT（1）＝DALT／DTIME
FPANG（I）＝ASIN（HDOT（I）NTAS（I））
```

 FPPNG(I)=FPANG(I)*57.2957B
 MOA1(1)=(TH(1)-FPANG(I))/COS(BA(1)/57.29578)
 ERROR(I)=AOA1 (I)-AOA(I)
 WRITE(4,7G5)1,TI(I),HC(1),AMC(1),UTAS(I),HDOT(I),FPANKG(I),
1AOA1 (I),AOA(1),ERROR(I)
FORTAT(1X,110,9F10.3)
CONTINUE
THIS PORTION COMPUTES ANGLE-OF-ATTACK BY
COMPUTING ALPHH-DOT, THEN ADDING IT TO
THE PREUIOUS AOA TO COMPUTE A NEW AOF
DO 800 I=1, M
AOR2(1) = FOA (1)
AOAS (1) =AAODA1
IF(I .EQ. 1)GO TO 77S
ANGZN= (ZN(I) +ZNN(I-1))/2
AVGBA=(BA(I)+BA(I-1))/C
AVGTH= (TH(I) +TH(1-1))/2
AVGQ=(Q(I)+Q(I-1))/2
AUGTAS=(UTAS (I)+UTAS (I-1))/2
AZ=AVGZN-(COS(AUGBA/57.29579)*COS(AUGTH/57.29578))
ADOT (1) =AUGG-(AZ*32.2*57.29578/AUGTAS)
DTIME=TI(I)-TI(I-1)
AOR2(I) =ROA(I-1)+(ADOT(I)*DTIME)
ADA3(I)=AOA3(I-1)+(ADOT(I)*DTIME)
THIS PORTION CORRECTS AOA CALCULATED AT CG FOR PITCH RATE: AOA CG $=$ ADA UANE $+(Q * \times$, UTAS) hHERE \times IS THE DISTANCE BETWEEN THE UANE AND THE ACCELEROMETER LOCATION ON THE AIRCRAFT
$x=17$
1F(ATYPE(1) . EQ. 'T')X=25
ROAT=ADA3(1)-(Q(1)*X/UTAS(1))
AL PHAK=ROA (I) AOAT
ERROR1 (I)=AOR2 (I)-AOA (I)
ERRORC(I) =ADAT-AOA (I)
ADOTM (I) $=($ ADA $(I)-A D A(I-1)), D T I M E$
$775 \operatorname{WRITE}(6,7 B 6) 1, T I(I), \operatorname{ADOT}(I), \operatorname{ADOTM}(I), \operatorname{AOPR}(I), \operatorname{AOA(I),ERROR1}(1)$, 1AOA3(I), ROAT, ERROR2(I), ALPPHAK FORMAT ($1 \times, 110,10$ F10.3)
800 CONTINUE
STCP
END

```

\section*{Appendix \(C\)}

Computer Program KALOPT

\section*{PROGRAM KALOPT}

ROGRAM KALOPT IS A FORTRAN PROGRAM DESIGNED TO OPTIMIZE
angle-OF-ATTACK using Kalman filter Eillations. THE
PROGRAM USES DATA PARAMETERS RECORDED INFLIGHT ON AN
AYDIN-UECTOR DATA ACOUISITION SYSTEM. KALOPT USES TIME (TI),
IAS (AS), INDICATED ALT (ALT), MEASURED AOA (ACA), PITCH
ANGLE (TH), PITCH RATE (Q), NORMAL ACCELERATION (ZN), SIDESLIP
ANGLE (MOSS), AND BANK ANGLE (BA) OBTAINED FROM DYNAMICS EUP AND EUS FILES. ROAOPT CORRECTS FOR PITOT-STATIC ERRORS TO
DETERMINE PRESSURE ALTITUDE (HC), MACH NUMBER (AMC), AND TRUE AIRSPEED (UTAS). THE PROGRAM CALCLLATES AN "OPTIMAL" TRUE AOR BY COMBINING STATE ESTIMATION OF AOA AND PITCH ANGLE WITH ACTUAL PITCH RNELE MEASUREMENTS. THE PROGRAM WEIGHS THE PITCH ANGLE MERSUREMENT AND RDDS THE WEIGHTED UALUE TO THE ESTIMATED AOA AND PITCH ANGLE. THE UPDATED AOA IS THE "OPTIMAL" TRUE ROA. THIS PROGRAM CAN BE USED WITH T-3ßA OR RF-4C DATA.
```

BYTE PNAME(12), ENAME(12),DOF(7),ATYPE(5),ATAIL(3)
DIMENSION TI (300), FS (300), AL T (300), AOA (300), TH (300), Q(300),
1ZN(300), AOSS(300), BA(300), HC(300), AMC (300),UTAS(300)
DIMENSION B(2,2),G(2,2),GA(2,2),P(2,2),AK(2,1),XA(2,1),BT(2,2),
1U(2,1),XP(2,1),GT(2,2),\operatorname{QGT}(2,2),\operatorname{GQGT}(2,2),PP(2,2),H(1,2),
2HT(2,1),PPHT(2,1),AKZMXH(2,1),HPPP(1,2),AKHPP(2,2)
BYTE FILE1(15),OFILE1(17)
BYTE FILEZ(15),OFILEZ(17)
BYTE FILE3(15),OFILE3(17)
BYTE FILE4(15),0FILE4(17)
BYTE FILEG(15),OFILE6(17)
BYTE FILE7(15),OFILEP(17)
BYTE FILEB(15),OFILEB(17)
DATA FILE1<'E','S',':',8*0,',','E','U','P'/
DATA FILEZ/'E','S',':',B*Q,':','E','U','S',

```

```

 DATR FILEG,'E,',S',':,'8*0,',','D','A,',T',
 DATA FILET/'E','S',',','8*Q,':','D','R',',',',',
 WRITE (5,100)
 FORMAT(' ENTER NAME OF DYNFIIICS FILE: NNNNNY.EUP',/)
 ACCEPT 110,(FILE1(I), l=4,11)
 FORMAT (8A1)
 OPEN(LNNIT=1,NAME=FILE1,TYPE='UNKNOWN')
 WRITE (5,120)
 FORMAT(' ENTER NAME OF DYNFMIICS FILE: NNNNNN. EUS',/)
 ACCEFT 110, (FILE2(I),I=4,11)
 OPEN(UNIT=2,NPME=FILE2,TYPE ='UNKNOWN')
 WRITE (5,125)
 FORMMT(''ENTER NAME OF INPUTT FILE: NNNNNN. INP'/)
 ACCEPT 110,{FILE8(1),In4,11}
 OPEN(UNIT T =G, NAME=FILEB,TYPEE='UNKNOWN')
 WRITE(5,13n)
 130 FORMAT(' ENTER NAME FOR DATA FILE 1: NNMNHNN.DAT',,)
ACCEPT 110,{FILE3(I), I=4,11)
OPEN(LINIT=3,NAME=FILE3,TYPE='LNNKNOWN')

```
```

 WRITE(5,140)
 140 FORHAT(' ENTER NAME FOR DATA FILE 21. NMNNNN.DAT',/)
ACCEPT 110,(FILE4(I), I=4,11)
OPEN(UNIT=4,NKME=FILE4,TY'PE= 'LNNNOWNN')
WRITE(5,15%)
150 FORMAT(' EMTER NAME FOR DATA FILE '3: NNWNNY.DAT',,)
ACCEPT 110,(FILEG(I),I=4,11)
OPEN(UNIT=G, NAME=FILEG,TYPE = 'UNKNOWN')
WRITE(5,155)
FORTAT(' ENTER NAME FOR DATA FILE 4: NNNWNN.DAT',')
ACCEPT 110,(FILET(1),1=4,11)
OPEN(LNITT=T,NAME=FILE',TYPE='UNKNOWN')
WRITE(5,169)
FORMAT (% ENTER NUMBER OF DATA POINTS DESIRED , ,/)
READ(5,170) N
FORMAT (IS)
WRITE(5,189)
FORMAT ('ENTER FIRST LINE DF DATA DESIRED ',>)
READ(5,170)M
WRITE(5,190)
190 FORMAT(' ENTER NUMBER OF INITIAL CONSTANT ADA LINES ' ,/)
READ(5,170)NA
WRITE(5,200)
200 FORMAT(' ENTER CORRECTIONS FOR PITCH RATE AND NZ: XXX,YYY',/,
1', CORR ARE FROM GROLND BLOCK, ABONE/BELOW O FOR Q':',
READ (5,210)QCORR,ZNCORR
FORMAT(2F10.3)
THIS PORTION READS DATA FROM THE DYNAMICS EUP AND EUS FILES
AND FORMATS FOUR DATA FILES (XXXX.DAT) LHERE THE PROGRAM
RESLLTS WILL BE SENT. DATA FILE \#1 RECORDS THE RAW DATA FRCM
THE EUP AND EUS FILES. DATA FILE \#? RECORDS THE OUTPUT OF
THE KALMAN FILTER PROGRAM: "OPTIMAL" UALUES FOR AOA AND PITCH
ANGLE, AND THE ERROR BETWEEN THE "OPTIMAL" AOA AND MEASURED
AOA. DATR FILE \#3 RECORDS THE UALUES OF THE P(T)- AND K(T)
MATRICES. DATA FILE \#4 RECORDS THE UALUES OF THE P(T)+
MATRIX ANDD THE TRUE RMS ERROR.
READ (1,220)PNAMME, ENAME,DOF
220 FORMAT (8X,12A1,15X,12A1,21X,7A1)
WRITE (3,230)PNAME, ENAME,DOF
WRITE (4.230)PNAME, ENAME,DDF
WRITE (6,230) PNAME, ENAME,DOF
WRITE (7,230)PNAME, ENAME,DOF
FORMAT ('PILOT:',1X,12A1,5X,'ENGINEER:',1X,12A1,5X,
1'DATE OF FL[GHT:',1X,7A1)
READ (1,240)ATYPE,ATAIL
240 FORMAT (11X,5A1,13X,3A1)
WRITE (3,250)ATYPE,ATAIL
WRITE (4, Z50)ATYPE, ATAIL
WRITE (6,250)ATYPE, ATAIL
WRITE (7,250)ATYPE,ATAIL
250 FORMAT('A/C TYPE:',1X,5A1,5X,'TAIL \#'',1X,3R1)
WRITE (3,260)),LINE',6X,'TIME', 2X,'AIRSPEED', ZX, 'ALTITUDE',7X,

```
```

 1'AOA',5X,'PITCH',2X,'PITCH RT',日X,'NR',6X,'AOSS',ZX,'ROL ANG')
 WRITE (4,270)
 270 FORMAT (//,7X,'LINE',6X,'TIME', 1X,'PRESS ALT',6X,'MACH',3X,'TRUE
1 RS',5X,'PITCH',3X,'PITCH +',5X,'ROA +',5X,'Q*XN', 2X,'ROA-TRLE',
Z2X,'ROR-UANE',5X,'ERROR',3X, 'K-ALPHA')
WRITE (6,2B0)
280 FORMAT (//,7X,'LINE',6X,'TIME',5X,'P-(1)',5X,'P-(2)',5X,'P-(3)',
15X,'P-(4)',}5\times,'K(1)',6X,'K(2)')
WRITE (7,285)
285 FORMAT (//,7X,'LINE',6X,'TIME',5X,'P+(1)',5X,'P+(2)',5X,'P+(3)',
15X,'P+(4)',4X,'ZABONE',4X,'ZBELON',4X,'ZA-TOT',4X,'ZB-TOT',6X,
2'DIFF',7X,'SUM',5X,'PSQRT')
WRITE (3,290)
FORMAT (16X,'(SEC)',3X,'(KNOTS)', 4X,'(FEET)',5X,'(DEG)',
15X,'(DEG)',1X,'(DEG/SEC)',7X,'(G)',5X''(DEG)',5X,'(DEG)',/)
WRITE (4,300)
300 FORMAT (16X,'(SEC)',4X,'(FEET)',12X,'(FT/SEC)',5X,
1'(DEG)',5X,'(DEG)',5X,'(DEG)',5X,'(DEG)',5X''(DEG)',
25X,'(DEG)',5X,'(DEG)',>)
WRITE(6,319)
FORMAT (16X,'(SEC)',')
WRITE(7,310)
READ (1,320)
FORMAT (/,1,/)
READ (2,330)
330 FORMAT (/,/,/,/,/)
DO 350 J=1,M
READ (1,340)
READ (2,340)
FORMAT ()
CONTINUE
DO 390 1=1, it
READ(1,360)TI (I),AS(1), ALT(1), AOA(1),TH(1),Q(1),ZN(I)

```

```

 READ(2,370)AOSS(I), BA(1)
 370 FORMAT (31X,F10.3,10X,F10.3)
THE NEXT TWO STEPS CORRECT PITCH RATE AND NORMPL G FOR BIRS
FOUND ON THE GROUND (BIAS COMPLJTED FROM O DEG/SEC FOR PITCH
RATE AND 1 G FOR NORMAL.G)
Q(1)=Q(1)-QCORR
ZN(I)=ZN(1)-ZNCORR
WRITE(3,380)I,TI(I),AS(I),ALT(1), ROA(I),TH(I),Q(I),ZN(I),AOSS(I),
1BA(I)
FORMAT(1X,I10,9F10.3)
CONTINUE
THIS PORTION PERFORMS THE PITOT-STATIC CORRECTIONS TO COMPUTE
PRESSURE ALT, MACH NLMBER, AND TRUE AIRSPEED. IT USES THE
STANDARD PITOT-STATIC EQUATIONS AND ERROR COEFFICIENTS FROM THE
USAF TEST PILOT SCHOOL FILES.
DO 710 I=1.N
IF(PLT(I).GT. 36009)ED TO 500
DELTA=(1-(6.97559E-6*PLT(1)))**5.2561

```
```

 THETA-1-(6.97559E-6*PLT(I))
 GO TO 510
    ```

```

THETA=.751874
510 1F(AS(I) GT. 661.48)G0 TO 520
QCICPA=((i+(.2*((AS(1)/G61.4日)**2)))**3.5)-1
GO TD 530
520 GCICPA=((166.922*((AS(I)/661.48)**7))/(((7*((AS(I)/661.48)**2))
1-1)**2.5))-1.
QCICPS=QCICPF/DELTA
AMIC=SQRT(5*(((QCICPS+1)**(.2957143))-1))
IF(ATYPE(1) .EQ.'T')EO TO 600
C
USAF TEST PILOT SCHOOL PITOT-STATIC FILES
DHPC=(-907+(10270*AMIC)+(-44495*(AMIC**2))+(93931*(AMIC**3))
1+(-95540*(AMIC**4))+(37208*(AMIC**5)))*THETA
IF(AMIC GGT. 1)DHPC=0
GO TO 700
600 IF(AMIC .LT. .955)G0 T0 620
IF(AMIC .LT. 1.025)GO TO 660
C0=-46325
C1=82563
C2=-36667
GO T0 680
CO=118
C1=-478
C2=912
G0 T0 680
C0=2676675
C1=-5636789
C2=2968036
GO TO 680
660 C0=-1414'71
C1=308123
C2=-166107
GO TO 680
DHPC=(C0+(C1*PMIC)+(C2*(AMIC**2)))*THETA
HC(I)=ALT(I)+DHPC
DPPPS=(3.61382E-5*DHPC)/THETA
DMPC=((1+(.2*(AMIIC**2)))*DPPPS)/(1.4*AMIC)
AMC(I)=AMMIC+DMPC
UTAS(I)=1.6978*AMC(I)*38.96763*SGRT(THETA*28日.15)
CONTINUE
THIS PORTION COMPUTES TRUE AOA BY THE RELATIONSHIP: TRUE ROA -
PITCH PNGLE - FLIGHT PATH ANGLE. FLIGHT PATH ANGLE IS
COMPUTED BY: FLIGHT PATH ANGLEE (FPANG) = INN SIN LUERTICAL
UEL (HDOT), TRUE AIRSPEED (UTAS)]. THE TRUE AOA IS THEN
ANERAGED OUER A TIME INTERUAL TO USE AS AOA(0) IN THE STATE
ESTIMATION. THE DATA USED HERE IS UNFILTERED.
IF(NA.EQ. O)PAOR=AOA(1)
IF(NA:EN: OSGO TO 790

```
```

 DO 750 I =2,NA-1
 DTIME=TI(I+1)-TI(I-1)
 DALT=HC(1+1)-HC(1-1)
 HDOT = DALT DTIME
 FPPNG=ASIN(HDOT/UTAS(I))
 FPPNG-FPANG*57.2957B
 AOA1=TH(I)-FPPNG
 ח
7 5 0
900 READ(B,900)P(1,1),P(1,2)
910
900 FORMAT(11X,F10.3,10X.F10.3)
CONTINUE
DO 930 1=1,2
READ (B,920)QA(1,1),QA(1,2)
920 FORMMT(11X,F10.3,10X,F10.3)
930 CONTINUE
READ(8,940)R
940 FORMAT(11X,F10.3)
l
XA(1,1)=AADA
XA(2,1)=TH(1)
DO2000 I=2,N
T=TI(I)-TI(I-1)
B(1,1)=1
B(1,2)=(-32.2)*57.29578/NTAS(I)
B}(2,1)=
G(1,1)=1
G(1,2)=(-32.2)*57.29578/UTAS(1)
G(2,1)=1
H(1,2)=1
U(1,1)=Q(1)
U(2,1)=2N(1)-COS(TH(I)/57.29578)
THIS PORTION PROPOGATES THE STATE MATRIX FROM THE LAST UPDATE

```
    \(X(T+)\) TO THE POINT PRIGR TO THIS UPDATE \(X(T-)\)
    DC \(1020 \mathrm{~J}=1,2\)
    DO \(1010 \mathrm{~K}=1.2\)
    \(B T(J, K)=B(J, K) * T\)

\section*{1010}
CONTINJE
CONTINLE
DO \(1030 \mathrm{~J}=1,2\)
\(\operatorname{XP}(J, 1)=X A(J, 1)+(B T(J, 1) * U(1,1))+(B T(J, 2) * \cup(2,1))\)
CONTINUE
THIS PORTICN PROPOGATES THE CONARIPNCE MATRIX P(T) FROM THE LAST UPDATE P(T+) TO THE POINT PRIOR TO THIS UPDATE, \(P(T-)\)
DO \(1050 \mathrm{~J}=1,2\)
DO \(1040 \mathrm{~K}=1,2\)
\(G T(K, J)=G(J, K)\)
CONTINUE
CONTINUE
DO \(1070 \mathrm{~J}=1,2\)
DO \(1060 \mathrm{~K}=1,2\)
\(\operatorname{QGT}(K, J)=(Q A(K, 1) * G T(1, J))+(B A(K, 2) * G T(2, J))\)
CONTINLE
CONTINVE
DO \(1090 \mathrm{~J}=1.2\)
DO \(1080 K=1,2\)
\(\operatorname{GQGT}(J, K)=(G(J, 1) * \operatorname{GGT}(1, K))+(G(J, 2) * Q G T(2, K))\)

\section*{1080}
1090
CONTINDE
DO \(1150 \mathrm{~J}=1,2\)
DO \(1140 \mathrm{~K}=1,2\)
\(\operatorname{PP}(J, K)=P(J, K)+(T * G Q G T(J, K))\)
CONTINUE
CONTINEE
\(\stackrel{\text { C }}{\text { C }}\) CHIS PORTION COMPUTES THE GAIN MATRIX, K(T)
DO \(1210 \mathrm{~J}=1,2\)
\(H T(J, 1)=H(1, J)\)
CONTINUE
DO 1230 J = 1, 2
\(\operatorname{PPHT}(J, 1)=(\operatorname{PP}(J, 1) * H T(1,1))+(\operatorname{PP}(J, 2) * H T(2,1))\)
HPPHT \(=(H(1,1) * P P H T(1,1))+(H(1,2) * P P H T(2,1))\)
\(H P P H T R=H P P H T+R\)
DO 1270 J=1,2
\(\operatorname{AK}(J, 1)=\operatorname{PPH}(J, 1) / H P P H T R\)
12
\(C\)
\(C\)
\(C\)
\(C\)
CONTINUE
THIS PORTION PERFORMS THE UPDATE OF THE STATE MATRIX, X(T), TD TAKE IT FROM X(T-) TD X(T+) BY WEIGHING THE PITCH ANELE MEASUREMENT ( \(Z\) ) AND ADDING IT TO \(X(T-)\)
Z=TH(I)
\(H \times \operatorname{Pr}=(H(1,1) * \times P(1,1))+(H(1,2) \times \times P(2,1))\)

```

 DO 1320 J=1,2
 AKZMXH(J,1)=(AK(J,1)*ZMDHP)
 XA(J,1)=XP(J,1)+AKZZMXH(J,1)
 CONTINUE
 ロतாே
THIS PORTION UPDATES P(T) FROM P(T-) TD P(T+)
DO 1400 K=1,2
HPP}(1,K)=(H(1,1)*PP(1,K))+(H(1,2)*PP(2,K)
1400
CONTINUE
DO 1430 J=1,2
DO 1420 K=1,2
AKHPP(J,K)=(AK(J,1)*HPP(1,K))
P(J,K)=PP(J,K)-AKHPP(J,K)
1420 CONTINUE
1430 CONTINDE
C THIS PORTION CORRECTS AOP CALCULATED AT CG FOR
PITCH RATE: AOA CG = AOA UANE + (Q * X, UTAS)
WHERE X IS THE DISTPNVE BETWEEN THE UPNE AND THE
ACCELEROMETER LOCRTION ON THE AIRCRAFT
X=17
IF(ATYPE(1) .EQ. 'T')X=2S
ADAT=XA(1,1)-(Q(I)*X~TRS(I))
QXU=Q(I) *X UTAS (I)
C THIS PORTION COMPLTTES THE SQUARE OF THE ERROR BETLEEN
PITCH ANGLE-CALC AND PITCH ANVLE-MEAS TO COMPLTE THE
TRUE RMS ERROR
ZA= <A(2,1)-TH(1)
IF(ZA .LT. O)GO TO 1500
ZA=ZA**己
Z日=0
ZAT:ZAT+ZA
GO TO 1510
ZB=ZA**2
ZA=0
ZBT=}=2BT+Z
1510 DIFF=ZAT-ZBT
SUM=(ZA+ZB)**.5
PSQRT=P(2,2)**.5
C THIS PORTION COMPUTES THE ERROR BETWEEN THE "OPTIMAL" TRUE AOA
C IHIS PLRTION COMPUSURED ADA AND THEN PRINTS OUT THE RESLLTS OF
C THE KALMAN FILTER PROGRAM.
ERROR=PDAT-AOA(I)
ALPHPMK=ROA (I)/AOAT
WRITE(4,1800)I,TI (I),HC(1), AMC(I), UTAS (1),THCI),
1XA(2,1), XA(1,1), QXU, ADAT, AOA(I),ERROR, PLPHAKK
FORMAT (1X, I 10,12F10.3)
WRITE(G,1日10)I,TI (I),PPP(1,1), PP(1,2), PP(2,1),PP(2,2),
1AK(1,1), AK (2,1)
1810
FOPMAT(1X,110,7F10.3)

```
```

 HRITE(7,1820)I,TI(1),P(1,1),P(1,2),P(2,1),P(2,2), 1ZA, ZB, ZAT, ZBT, DIFF, SLM, PSQRT 1820 FORMAT (\(1 \times, 110,12 F 10.3\))
    ```

\section*{2000}
``` CONTINSE \({ }_{\text {GNO }}\)
```

TABLE IV
T-38A Flight Test Points ${ }^{1}$

Cruise Configuration Wings Level

No External Stores 3 seconds per $g$ min

Test Point	Altitude (feet)	Mach	$\operatorname{Min} G$	$\operatorname{Max}$ G
1	25,000	0.8	-1	+4
2	25,000	0.9	-1	+6
3	25,000	0.95	-1	+6
4	25,000	1.05	-1	+6
5	25,000	0.6	-1	+2
6	25,000	0.45	-1	+1
7	15,000	0.8	-1	+6
8	15,000	0.9	-1	+6
9	15,000	0.95	-1	+6
10	15,000	1.05	-1	+6
11	15,000	0.6	$-1$	+4
12	15,000	0.45	-1	+2

${ }^{1}(11: 3)$

TABLE V

Summary of T-38A Test Flights
T-38A 68-8205 Edwards AFB, Cal.

Date   of Flight	Pilot	Engineer	Flight   Time	Test Points   Flown
19 Jul 85	Eichhorn	Thacker	0.7 hrs	None - Bad Wx
23 Jul 85	Eichhorn	Thacker	1.0 hrs	1 through 12
26 Jul 85	Arnold	Thacker	0.8 hrs	1 through 6
Total Flight Time - 2.5 hrs				

# Appendix E <br> T-38A YAPS Noseboom Diagram 

10



Figure 31. Vought Yaw and Pitch System Noseboom Diagram (Top View)

1. Rawlings, Kenneth. A Method of Estimating Upwash Angle at Noseboom-mounted Vanes. AFFTC-TIM-81-1. Edwards AFB,

2. Hall, G. Warren and Ronald W. Huber. System Description and Performance Data for the USAF/CAL Variable Stability $\overline{\mathrm{T}-3} 3$ Airplane. $\overline{\mathrm{AFFD}} \overline{-T R}-\overline{70-7} \overline{\mathrm{I}}$. Wright-Patterson AFB, Ohio: Air Force Dynamics Laboratory, August 1970.
3. Rawlings, Kenneth and Mark T. Korsmo. Aerodynamic Characteristics of the AFFTC Noseboom Instrumentation Unit. AFFTC-TIM-81-2. Edwards AFB, California: Air Force Flight Test Center, March 1982.
4. Shafer, M.F. "Flight-determined Correction Terms for Angle of Attack and Sideslip," AIAA 9th Atmosperic Flight Mechanics Conference. AIAA-82-1374. American Institute of Aeronautics and Astronautics, San Diego, August 1982.
5. USAF Test Pilot School. Flying Qualities Theory and Flight Test Techniques, Chapte= 3. Edwards AFB, California: USAF Test pilot Schōol, July 1984.
6. Maybeck, Peter S. Stochastic Estimation and Control Systems, Part I. Wright-Patterson AFB, Ohio: Air Force Institute of Technology, February 1983.
7. Maybeck, Peter S. Stochastic Models, Estimation, and Control, Volume 1. New York: Academic Press, Inc., 1979.
8. Department of the Air Force. USAF Series T-38A Flight Manual. T.O. 1T-38A-1. Kelly AFB, Texas: San Antonio ALC/MMEDT, June 1982.
9. USAF Flight Test Center. T-38 S/N 68-8205 Aydin-Vector Airborne Test Instrumentation system. Class II Modification Document. Edwards AFB, California: Vought Corporation, 1979.
10. USAF Test Pilot School. T-38A S/N 68-8205 Partial Flight Manual. Edwards AFB, California: USAF Test Pilot School, May 1985.
11. Thacker, Thomas H. Limited Evaluation of the Angle-ofAttack Position Errors of the T-38A and RF-4C. Test. Plan. Edwards AFB, California: USAFTēt Pilot School, July 1985.



microcopy resolution test chart


## Vita

Captain Thomas H. Thacker was born on 24 December 1955
in Casablanca, Morocco. He graduated from Beavercreek High School in Dayton, Ohio in 1973. Captain Thacker was a distinguished graduate of the United States Air Force Academy in 1978. He received the degree of Bachelor of Science in Aeronautical Engineering and a regular commission in the USAF from the Academy. He attended undergraduate navigator training and received his wings in February, 1979. He was a distinguished graduate and received the ATC Commander's Trophy as the top graduate in his class. Captain Thacker served as an F-lll instructor weapons systems officer in the $20 t h$ Tactical Fighter Wing, RAF Upper Heyford, United Kingdom, from November 1979 to March 1983. He graduated from the F-111 Fighter Weapons School in March, 1982. Captain Thacker was selected for the combined Air Force Institute of Technology/ Test Pilot School program in 1983. He attended the AFIT School of Engineering from June 1983 to June 1984. He graduated from the USAF Test Pilot School in June 1985 as a distinguished graduate and received the R. L. Jones Award as the top flight test engineer/navigator in his class. Captain Thacker is currently assigned with the 3247 th Test Squadron, Eglin AFB, Florida.

Permanent address:	1334 Walnut Bend Court
	Fairborn, Ohio 45324

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE


## UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Block 11. (Cont) ANGLE-OF-ATTACK POSITION ERROR FROM FLIGHT TEST DATA

Block 19. (Cont) error testing. The method was accurate enough to identify a hysteresis error in the $T-38 A^{\prime} s$ AOA sensor of $+/-0.5$ degrees, which was confirmed by ground calibration.


## 386

## DTIC

